

欢迎回家!神舟十二号载人飞船返回舱成功着陆

- 神舟十二号航天员乘组在空间站内驻留工作了3个月,刷新了中国航天员单次飞行任务太空驻留时间的纪录
- 在轨飞行期间进行了2次航天员出舱活动,开展了一系列空间科学实验和技术试验
- 在轨验证了航天员长期驻留、再生生保、空间物资补给、出舱活动、舱外操作、在轨维修等空间站建造和运营关键技术
- 神舟十二号载人飞行任务的圆满成功,为后续空间站建造运营奠定了更加坚实的基础

三名航天员安全顺利出舱,空间站阶段首次载人飞行任务取得圆满成功

9月17日,神舟十二号载人飞船返回舱在东风着陆场成功着陆。这是航天员聂海胜(中)、刘伯明(右)、汤洪波安全顺利出舱。新华社炎

据中国载人航天工程办公室消息, 北京时间2021年9月17日13时 34分,神舟十二号载人飞船返回舱在东 风着陆场成功着陆,执行飞行任务的航 天员聂海胜、刘伯明、汤洪波安全顺利出 舱,身体状态良好,空间站阶段首次载人 飞行任务取得圆满成功。这也是东风着 陆场首次执行载人飞船搜索回收任务。

返回舱舱门打开后,医监医保人员 上前与航天员交流。三名航天员出舱 后表情轻松,挥手向大家致意。

回收着陆是载人飞船飞行任务的 最后阶段,也决定着飞行任务的最终成 败。为了护佑航天员安全回家,科研团 队为神舟十二号飞船研制了高可靠性 和安全性的回收着陆系统,确保飞船返 回舱走稳回家的路。

精测高度: 开启回家"大幕"

神舟十二号飞船在轨飞行过程中, 回收着陆系统只是在返回舱内静静守 候,直到飞船返回舱穿过大气层后自 由下落至距地10公里高度时,由静压 高度控制器判断高度,并发出回收系统 启动信号,回收着陆系统才开始工作。

静压高度控制器只是程序控制子 系统的设备之一,整个程序控制的"幕 后成员"还包括回收配电器、火工控制 器、程序控制器、行程开关等,它们分 工明确,各司其职,就像人类大脑的不 同区域,通过发出程序控制指令信号, 控制着"台前"各执行机构完成规定的 弹伞舱盖拉引导伞、拉减速伞、减速 伞分离拉主伞、主伞解除收口、抛防热 大底、转垂挂等一系列不可逆的动作。

逐级开伞: 完成"急刹车"

1200平方米的降落伞在飞船返 回舱降落时不能一下子全部打开,否 则伞会被空气崩破。航天科技集团五 院的设计师们为飞船量身定制了一套 三级开伞程序,先打开两个串联的引 导伞,再由引导伞拉出一顶减速伞。 减速伞工作一段时间后与返回舱分 离,同时拉出1200平方米的主伞。

为防止减速伞和主伞张开瞬间承 受的力太大,减速伞和主伞均采用了 收口技术,也就是说,放慢伞绳从收拢 到散开的过程,让1200平方米的大伞 分阶段张开,保证整个开伞过程的过 载处于航天员体感可承受的范围。航 天员也正因为感受到这一连贯动作的 晃动,才能确认回收系统工作正常。

在开伞之后,由航天科工集团二院 23 所研制的测量雷达便开始发挥作 用。依靠光学、红外探测设备,工作人 员能探测到航天器的方向,但由于落点 区域太大,能见度受天气条件等影响, 很难明确降落的具体地点。通过测量 雷达,可以不受天气影响,精细探测,大 大减少搜救时间,提高搜救效率

火箭反推:

实现返回舱软着陆

防热大底是飞船进入大气层后 的"铠甲",等主伞完全打开后一会 儿,飞船返回舱就会抛掉这身"铠 甲"。在神舟十二号回家的最后阶 段, 航天科工集团三院35 所研制的 "刹车指令员"发挥了重要作用。它

位于神舟十二号返回舱底部,伽马射 线的探测体制赋予它穿透地表植被 的能力,可精确测量返回舱底部距离 地表的高度。当返回舱距离地面-定高度时,它给出预指令信号,舱内 指示灯亮起,航天员将做好着陆准 备;之后,根据实时速度在合适高度 发出点火指令,控制反推发动机点火 "刹车",最大限度发挥反推发动机的 缓冲性能,让航天员安全舒适着陆。

故障预案: 充分把握救生机会

由于飞船返回舱在返回过程中 处于高速运动的状态,一旦中途出现 故障,外界无法采取营救措施,也不 可能将程序暂停或恢复到原位重新 开始。因此,回收着陆系统的工作过 程只能是由一系列不可逆按时序执 行的动作组成。

为保证航天员的生命安全,提高 回收着陆系统工作的可靠性和安全 性, 航天科技集团五院的设计师们想 到了一切可能发生的紧急情况,为回 收着陆系统设置了9种故障模式,涉 及正常返回、中空救生、低空救生3种 基本返回工作程序,采取了备份降落 伞装置、时间控制器、三组高度开关 等多种备份措施,以全面保证返回舱 在火箭发射段、上升段、正常返回和 应急返回段的安全返回与着陆。

落点标位: 助力搜救快速定位

神舟飞船返回舱安全着陆后,为

保证地面搜救系统及时搜索到返回 地面的返回舱,除布设一定数量的雷 达,跟踪测量返回舱轨道并预报落点 位置外,设计人员还为返回舱上安装 了自主标位设备,告诉搜救人员"我 在这里"。 据新华社

新闻链接

"成都造" 为飞船回家保驾护航

为全面保障神舟十二号的回家 之旅,中国电科第十研究所(以下简 称十所)承研的多型测控通信系统圆 满完成各项测控通信任务,确保神舟 十二号飞船一路平安。

据悉,十所承研的测控通信系 统,涉及陆基、海基、天基共三类测控 通信系统,它们为神舟十二号飞船回 家"连上了"一根安全可靠的风筝线, 为神舟十二号返回全过程提供坚实 的安全保障。

今年6月,为确保神舟十二号载 人飞船挺进太空,十所承研了设备应 用在发射场系统、运载火箭系统、测 控系统、地面应用系统中,为神舟十 二号奔赴太空保驾护航。

飞船测量定轨、控制指令上注、 遥测以及科学数据下传等都要依靠 测控通信系统来完成,参与神舟十二 号飞船发射任务的测控通信系统涉 及多个陆基、海基以及天基系统,其 中十所承研了一半以上的测控通信 系统,是载人航天工程测控通信的主

华西都市报-封面新闻记者 杨晨